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Deep learning frameworks

and others
https://skymind.ai/wiki/comparison-frameworks-dl4j-tensorflow-pytorch
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TensorFlow

I Google Brain’s second generation machine learning system

I computations are expressed as stateful data-flow graphs
I automatic differentiation capabilities
I optimization algorithms: gradient and proximal gradient based
I code portability (CPUs, GPUs, on desktop, server, or mobile computing platforms)
I Python interface is the preferred one (Java, C and Go also exist)
I installation through: pip, Docker, Anaconda, from sources
I Apache 2.0 open-source license
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Tensorflow

I Tensorflow is a computational framework for building machine learning models
I High-level, object-oriented API (tf.estimator)
I Libraries for common model components (tf.layers/tf.losses/tf.metrics)
I Lower-level APIs (TensorFlow)
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TensorFlow dataflow graph

I TensorFlow 1 separates definition of computations from their execution
I Phase 1: assemble a graph
I Phase 2: use a session to execute operations in the graph.

I not true in eager mode (default in TensorFlow 2)
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Keras

I Keras is a high-level neural networks API, written in Python, developed with a focus on
enabling fast experimentation.

I Keras offers a consistent and simple API, which minimizes the number of user actions
required for common use cases, and provides clear and actionable feedback upon user
error.

I Keras is capable of running on top of many deep learning backends such as TensorFlow,
CNTK, or Theano. This capability allows Keras model to be portable across all these
backends.

I Kesas is one of the most used Deep Learning Framework used by researchers, and is now
part of the official TensorFlow Higher Level API as tf.keras

I Keras models can be trained on CPUs, Xeon Phi, Google TPUs and any GPU or
OpenCL-enabled GPU like device.

I Keras is the TensorFlow’s high-level API for building and training deep learning models.
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Keras
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Building models with Keras

I The core data structure of Keras is the Model which is basically a container of one or more
Layers.

I There are two main types of models available in Keras: the Sequential model and the
Model class, the latter used to create advanced models.

I The simplest type of model is the Sequential model, which is a linear stack of layers. Each
layer is added to the model using the .add() method of the Sequential model object.

I The model needs to know what input shape it should expect. The first layer in a Sequential
model (and only the first) needs to receive information about its input shape, specifing the
input_shape argument. The following layers can do automatic shape inference from the
shape of its predecessor layer.
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Model build

import tensorflow as tf
from tensorflow import keras

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense , Activation

model = Sequential ()
# Adds to the model a densely -connected
# layer with 32 units with input shape 16:
model.add(Dense(32, input_shape =(16,)))
# Adds another layer with 16 units ,
# each connected to 32 outputs of previous layer
model.add(Dense(16))
# Last layer with 8 units ,
# each connected to 16 outputs of previous layer
model.add(Dense(8, activation='softmax '))
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Activation functions

I The activation argument specifies the activation function for the current layer. By default,
no activation is applied.

I The softmax activation function normalize the output to a probability distribution. Is
commonly used in the last layer of a model. To select a single output in a classification
problem the most probable one can be selected.

I The ReLU (Rectified Linear Unit), max(0,x), is commonly used as activation function for
the hidden layers.

I Many other activation functions are available or easily defined as well as layer types.
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Model compile

I Once the model is built, the learning process is configured by calling the compile method.
The compile phase is required to configure the following (mandatory) elements of the
model:

I optimizer: this object specifies the optimization algorithm which adapt the weights of the layers
during the training procedure;

I loss: this object specifies the function to minimize during the optimization;
I metrics: [optional] this objects measure the performance of your model and is used to monitor the

training

# Configure the model for mean -squared error regression.
model.compile(optimizer='sgd', # stochastic gradient descent
loss='mse', # mean squared error
metrics =['accuracy ']) # an optional list of metrics
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Model compile

I Once the model is compiled, we can check its status using the summary and get precious
information on model composition, layer connections and number of parameters.

model.summary ()

_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
dense (Dense) (None , 32) 544
_________________________________________________________________
dense_1 (Dense) (None , 16) 528
_________________________________________________________________
dense_2 (Dense) (None , 8) 136
=================================================================
Total params: 1,208
Trainable params: 1,208
Non -trainable params: 0
_________________________________________________________________
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Model training

I The .fit method trains the model against a set of training data, and reports loss and
accuracy useful to monitor the training process.

import numpy as np

# generate synthetic training dataset
x_train = np.random.random ((1000, 16))
y_train = np.random.random ((1000, 8))

# generate synthetic validation data
x_valid = np.random.random ((100, 16))
y_valid = np.random.random ((100, 8))

# fit the model using training dataset
# over 10 epochs of 32 batch size each
# report training progress against validation data
model.fit(x=x_train , y=y_train ,

batch_size=32, epochs=10,
validation_data =(x_valid , y_valid))

16/36



EUDAT CDI – PRACE Summer School, 23-27 September 2019, Trieste, Italy 

Model evaluation and prediction

I Once the training process has completed, the model can be evaluated against the validation
dataset. The evaluate method returns the loss value and, if the model was compiled
providing also a metrics argument, the metric values.

model.evaluate(x_valid , y_valid , batch_size=32)

I The predict method can finally be used to make inference on new data

model.predict(x_valid , batch_size=128)
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Model saving and restore

I A trained model can be saved and stored to a file for later retreival. This allows you to
checkpoint a model and resume training later without rebuiling and training from scratch.

I Files are saved in HDF5 format, with all weight values, model’s configuration and even the
optimizer’s configuration.

save_model_path='saved/intro_model '
model.save(filepath=save_model_path , include_optimizer=True)

model = tf.keras.models.load_model(filepath=save_model_path)
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Try it out
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The MINIST dataset

I The MNIST data set is a standard set of handwritten numerical digits from 0 to 9 which is
commonly used as the "Hello World" test for Deep Learning classification problem.

I Each sample is a 28×28 grayscale image.

20/36



EUDAT CDI – PRACE Summer School, 23-27 September 2019, Trieste, Italy 

Loading MNIST

I Keras comes with many dataset built in and automatically splits the data into a training and
validation set.

(x_train , y_train), (x_test , y_test) = tf.keras.datasets.mnist.
load_data ()
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Defining a model

model.add(tf.keras.layers.Conv2D(filters=64, kernel_size=2, padding='
same', activation='relu', input_shape =(?? ,?? ,?)))

model.add(tf.keras.layers.MaxPooling2D(pool_size=2))
model.add(tf.keras.layers.Dropout(0.3))
model.add(tf.keras.layers.Conv2D(filters=32, kernel_size=2, padding='

same', activation='relu'))
model.add(tf.keras.layers.MaxPooling2D(pool_size=2))
model.add(tf.keras.layers.Dropout(0.3))
model.add(tf.keras.layers.Flatten ())
model.add(tf.keras.layers.Dense(256, activation='relu'))
model.add(tf.keras.layers.Dropout(0.5))
model.add(tf.keras.layers.Dense(?, activation='softmax '))
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Compiling and Training

I The categorical cross entropy, −∑p(x)q(x), with p the true distribution and q the expected
one.

I Adam is adaptive learning rate optimization algorithm.

model.compile(loss='categorical_crossentropy ',
optimizer='adam',
metrics =['accuracy '])

model.fit(x_train ,
y_train ,
batch_size=64,
epochs=10,
validation_data =(x_valid , y_valid),
)

I Try it out
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Callbacks

I What if we want to stop if accuracy is > 0.01 ?
I define a callback

class myCallback(keras.callbacks.Callback)
def on_epoch_end(self ,epoch ,logs ={}):

if(logs.get('acc')>0.01):
print("\nAccuracy exceeds threshold , Stop train!")
self.model.stop_training =True

I the install it

mycallbacks=myCallBack ()
model.fit(train_images ,train_labels ,epoch=100,callbacks =[ mycallbacks

])
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Callbacks

I Keras provides some predefined callbacks to feed in, among them for example:
I TerminateOnNaN(): that terminates training when a NaN loss is encountered
I ProgbarLogger(): that prints metrics to stdout
I ModelCheckpoint(filepath): that save the model after every epoch
I EarlyStopping: which stop training when a monitored quantity has stopped improving
I LambdaCallback: for creating simple, custom callbacks on-the-fly

I You can select one or more callback and pass them as a list to the callback argument of the
fit method.

I You can also create a callback object from scratch, customizing its behaviour overloading
the base methods of the Callback Keras class:

I on_epoch_begin and on_epoch_end
I on_batch_begin and on_batch_end
I on_train_begin and on_train_end

I A callback has access to its associated model through the class property self.model, so that
you can monitor and access many of the quantities which are in the optimization process.

25/36



EUDAT CDI – PRACE Summer School, 23-27 September 2019, Trieste, Italy 

Introduction

Keras

Distributed Deep Learning

26/36



EUDAT CDI – PRACE Summer School, 23-27 September 2019, Trieste, Italy 

Neural Network concurrency

Tal Ben-Nun and Torsten Hoefler, Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis,

2018
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Data Parallelism vs Model Parallelism
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Hardware and Libraries

I It is not only a matter of computational power:
I CPU (MKL-DNN)
I GPU (cuDNN)
I FPGA
I TPU

I Input/Output
I SSD
I Parallel file system (if you run in parallel)

I Communication and interconnection too, if you are running in distributed mode
I MPI
I gRPC + verbs (RDMA)
I NCCL
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Data Input Pipeline
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CPU optimizations

I Built from source with all of the instructions supported by the target CPU and the
MKL-DNN option for Intel® CPU.

I Adjust thread pools
I intra_op_parallelism_threads: Nodes that can use multiple threads to parallelize their execution

will schedule the individual pieces into this pool. (OMP_NUM_THREADS)
I inter_op_parallelism_threads: All ready nodes are scheduled in this pool

config = tf.ConfigProto ()
config.intra_op_parallelism_threads = 44
config.inter_op_parallelism_threads = 44
tf.session(config=config)

I The MKL is optimized for NCHW (default NHWC) data format and use the following
variables to tune performance: KMP_BLOCKTIME, KMP_AFFINITY ,
OMP_NUM_THREADS
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Synchronous and asynchronous data parallel training

TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems, 2016
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Keras GPUs Parallel Model

model = keras.Sequential ()
...
gpus=4
parallel_model = keras.utils.multi_gpu_model(model , gpus=gpus)

parallel_model.compile(loss='categorical_crossentropy ',
optimizer='adam',
metrics =['accuracy '])

parallel_model.fit(x_train ,
y_train ,
batch_size=batch_size ,
epochs=epochs ,
validation_data =(x_valid , y_valid),
)
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Keras + Uber/Horovod

...
import horovod.tensorflow.keras as hvd
...
#Horovod: initialize Horovod.
hvd.init()

opt = tf.keras.optimizers.Adam(0.001 * hvd.size())
opt = hvd.DistributedOptimizer(opt)

model.compile(loss='categorical_crossentropy ',
optimizer=opt ,
metrics =['accuracy '])

callbacks = [
# Horovod: broadcast initial variable states from rank 0 to all

other processes.
hvd.callbacks.BroadcastGlobalVariablesCallback(0),

]

model.fit(x_train ,
y_train ,
batch_size=batch_size ,
callbacks=callbacks ,
epochs=epochs ,
validation_data =(x_valid , y_valid)
)
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Hands-on

I Use keras−mnist.py
I Define the input shape in the first layer and the output shape in the last layer
I Run it and play with hyperpameters

I Use keras−mnist−mgpu.py
I Try the multi GPU on Galileo. Play with the number of GPU and the hyperparameter

(batchsize and epochs)
I Use keras−mnist−hvd.py. Play with the number of GPU, the number of nodes and the

hyperparameters (batchsize and epochs)
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Other References

I Horovod
I NCCL
I MNIST
I CIFAR datasets
I Deeplearning.ai youtube channel
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