M Collaborative F”ﬂ”[
EUDAT Data Infrastructure

Introduction to Keras
TensorFlow

Marco Rorro
m.rorro@cineca.it
CINECA - SCAI SuperComputing Applications and Innovation Department

Sowww.eudat.eu °owww.prace-ri.eu

IR Colloborative PRACE
EUDAT Data Infrastructure

Table of Contents

Introduction
Keras

Distributed Deep Learning

EUDAT CDI - PRACE Summer School 27 September 2019, Trieste, Italy

IR Colloborative PRACE
EUDAT Data Infrastructure

Introduction

EUDAT CDI - PRACE Summer School, 23-27 September 2019, Trieste, Italy

IR Colloborative PRACE
EUDAT Data Infrastructure

Deep learning frameworks

Deeplearning4j

Pyl orch

Caffe?
Te n F low

é CKhalner
@,

and others

htps://skymind.ai/wiki/comparison-frameworks-dldj-tensorflow-pytorch

EUDAT CDI - PRACE Summer School, 23-27 September 2019, Trieste, Italy 4/36

https://skymind.ai/wiki/comparison-frameworks-dl4j-tensorflow-pytorch

IR Colloborative PRACE
EUDAT Data Infrastructure

TensorFlow

» Google Brain’s second generation machine learning system

EUDAT CDI - PRACE Summer School, 23-27 September 2019,

IR Colloborative PRACE
EUDAT Data Infrastructure

TensorFlow

» Google Brain’s second generation machine learning system

» computations are expressed as stateful data-flow graphs

EUDAT CDI - PRACE Summer School, 23-27 September 2019,

IR Colloborative PRACE
EUDAT Data Infrastructure

TensorFlow

» Google Brain’s second generation machine learning system
» computations are expressed as stateful data-flow graphs

» automatic differentiation capabilities

EUDAT CDI - PRACE Summer School 27 September 2019, Trieste, Italy

IR Colloborative PRACE
EUDAT Data Infrastructure

TensorFlow

» Google Brain’s second generation machine learning system
» computations are expressed as stateful data-flow graphs
» automatic differentiation capabilities

» optimization algorithms: gradient and proximal gradient based

EUDAT CDI - PRACE Summer School 27 September 2019, Trieste, Italy

IR Colloborative PRACE
EUDAT Data Infrastructure

TensorFlow

» Google Brain’s second generation machine learning system

» computations are expressed as stateful data-flow graphs

» automatic differentiation capabilities

» optimization algorithms: gradient and proximal gradient based

» code portability (CPUs, GPUs, on desktop, server, or mobile computing platforms)

EUDAT CDI - PRACE Summer School 27 September 2019, Trieste, Italy

IR Colloborative PRACE
EUDAT Data Infrastructure

TensorFlow

» Google Brain’s second generation machine learning system

» computations are expressed as stateful data-flow graphs

» automatic differentiation capabilities

» optimization algorithms: gradient and proximal gradient based

» code portability (CPUs, GPUs, on desktop, server, or mobile computing platforms)

» Python interface is the preferred one (Java, C and Go also exist)

EUDAT CDI - PRACE Summer School 27 September 2019, Trieste, Italy

IR Colloborative PRACE
EUDAT Data Infrastructure

TensorFlow

» Google Brain’s second generation machine learning system

» computations are expressed as stateful data-flow graphs

» automatic differentiation capabilities

» optimization algorithms: gradient and proximal gradient based

» code portability (CPUs, GPUs, on desktop, server, or mobile computing platforms)
» Python interface is the preferred one (Java, C and Go also exist)

> installation through: pip, Docker, Anaconda, from sources

EUDAT CDI - PRACE Summer School 27 September 2019, Trieste, Italy

IR Colloborative PRACE
EUDAT Data Infrastructure

TensorFlow

» Google Brain’s second generation machine learning system

» computations are expressed as stateful data-flow graphs

» automatic differentiation capabilities

» optimization algorithms: gradient and proximal gradient based

» code portability (CPUs, GPUs, on desktop, server, or mobile computing platforms)
» Python interface is the preferred one (Java, C and Go also exist)

> installation through: pip, Docker, Anaconda, from sources

» Apache 2.0 open-source license

EUDAT CDI - PRACE Summer School 27 September 2019, Trieste, Italy

W Collaborative PRACE
EUDAT Data Infrastructure

Tensorflow

» Tensorflow is a computational framework for building machine learning models

> High-level, object-oriented API (tf.estimator)
> Libraries for common model components (tf.layers/tf.losses/tf.metrics)
> Lower-level APIs (TensorFlow)

High-Level

TensorFlow APIs

Mid-Level .

TensorFIow Apls

Low-level Py Gt - -
TensorFlow APls

TensorFlow

Kernel TensorFlow Distributed Execution Engine

EUDAT CDI - PRACE Summer School, 23-27 September 2019, Trieste, Italy

IR Colloborative PRACE
EUDAT Data Infrastructure

TensorFlow dataflow graph

» TensorFlow 1 separates definition of computations from their execution
> Phase 1: assemble a graph
> Phase 2: use a session to execute operations in the graph.

» not true in eager mode (default in TensorFlow 2)

(@ o R
l—_~\
5 'l \
—3 1'nput)
‘\\ ’1
. _L)
pr- N
3 ’ \
— ¢ input)
\‘ ‘l
\ b J

EUDAT CDI - PRACE Summer School 27 September 2019, Trieste, Italy

IR Colloborative PRACE
EUDAT Data Infrastructure

Keras

EUDAT CDI - PRACE Summer School, 23-27 September 2019, Trieste, Italy

IR Colloborative PRACE
EUDAT Data Infrastructure

Keras

» Keras is a high-level neural networks API, written in Python, developed with a focus on
enabling fast experimentation.

> Keras offers a consistent and simple API, which minimizes the number of user actions
required for common use cases, and provides clear and actionable feedback upon user
error.

» Keras is capable of running on top of many deep learning backends such as TensorFlow,
CNTK, or Theano. This capability allows Keras model to be portable across all these
backends.

» Kesas is one of the most used Deep Learning Framework used by researchers, and is now
part of the official TensorFlow Higher Level API as tf keras

» Keras models can be trained on CPUs, Xeon Phi, Google TPUs and any GPU or
OpenCL-enabled GPU like device.

» Keras is the TensorFlow’s high-level API for building and training deep learning models.

EUDAT CDI - PRACE Summer School, 23-27 September 2019, Trieste, Italy 9/36

IR Colloborative PRACE
EUDAT Data Infrastructure

Keras

Deep Learning Framework Power Scores 2018
100 96.77
80

60

Score

40

20
12.02
8.37

489 365 271 o 108

7 Az G #, o) O, G e £
%-% ECN %76,%) ??’ee,,o T, e ooy, o Mg, "4y
0,
by

”
Framework N

EUDAT CDI - PRACE Summer School, 23-27 September 2019, Trieste, Italy 10731

IR Colloborative PRACE
EUDAT Data Infrastructure

Building models with Keras

v

The core data structure of Keras is the Model which is basically a container of one or more
Layers.

» There are two main types of models available in Keras: the Sequential model and the
Model class, the latter used to create advanced models.

v

The simplest type of model is the Sequential model, which is a linear stack of layers. Each
layer is added to the model using the .add() method of the Sequential model object.

» The model needs to know what input shape it should expect. The first layer in a Sequential
model (and only the first) needs to receive information about its input shape, specifing the
input_shape argument. The following layers can do automatic shape inference from the
shape of its predecessor layer.

EUDAT CDI - PRACE Summer School, 23-27 September 2019, Trieste, Italy 11/36

IR Colloborative PRACE
EUDAT Data Infrastructure

Model build

import tensorflow as tf
from tensorflow import keras

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Activation

model = Sequential()

Adds to the model a densely-connected

layer with 32 units with input shape 16:
model.add(Dense (32, input_shape=(16,)))

Adds another layer with 16 units,

each connected to 32 outputs of previous layer
model.add(Dense (16))

Last layer with 8 units,

each connected to 16 outputs of previous layer
model.add(Dense (8, activation=’softmax’))

RACE Summer School, 23-27 September 2019, Trieste, Italy

IR Colloborative PRACE
EUDAT Data Infrastructure

Activation functions

» The activation argument specifies the activation function for the current layer. By default,
no activation is applied.

» The softmax activation function normalize the output to a probability distribution. Is
commonly used in the last layer of a model. To select a single output in a classification
problem the most probable one can be selected.

» The ReLU (Rectified Linear Unit), max(0,x), is commonly used as activation function for
the hidden layers.

» Many other activation functions are available or easily defined as well as layer types.

EUDAT CDI - PRACE Summer School 27 September 2019, Trieste, Italy

IR Colloborative PRACE
EUDAT Data Infrastructure

Model compile

» Once the model is built, the learning process is configured by calling the compile method.
The compile phase is required to configure the following (mandatory) elements of the
model:

> optimizer: this object specifies the optimization algorithm which adapt the weights of the layers
during the training procedure;

> loss: this object specifies the function to minimize during the optimization;

> metrics: [optional] this objects measure the performance of your model and is used to monitor the
training

Configure the model for mean-squared error regression.
model.compile (optimizer=’sgd’, # stochastic gradient descent
loss=’mse’, # mean squared error

metrics=[’accuracy’]) # an optional list of metrics

EUDAT CDI - PRACE Summer School, 23-27 September 2019, Trieste, Italy

IR Colloborative PRACE
EUDAT Data Infrastructure

Model compile

» Once the model is compiled, we can check its status using the summary and get precious
information on model composition, layer connections and number of parameters.

model. summary ()

dense (Dense)

dense_1 (Dense)

1
Trainable params: 1,

Non-trainable params: 0

)

Total param

EUDAT CDI - PRACE Summer School, 23-27 September 2019, Trieste, Italy

IR Colloborative PRACE
EUDAT Data Infrastructure

Model training

» The .fit method trains the model against a set of training data, and reports loss and
accuracy useful to monitor the training process.

import numpy as np

generate synthetic training dataset
x_train = np.random.random((1000, 16))
y_train = np.random.random((1000, 8))

generate synthetic validation data
x_valid = np.random.random((100, 16))
y_valid = np.random.random((100, &))

fit the model using training dataset
over 10 epochs of 32 batch size each
report training progress against validation data
model.fit(x=x_train, y=y_train,
batch_size=32, epochs=10,
validation_data=(x_valid, y_valid))

EUDAT CDI - PRACE Summer School, 23-27 September 2019, Trieste, Italy

IR Colloborative PRACE
EUDAT Data Infrastructure

Model evaluation and prediction

» Once the training process has completed, the model can be evaluated against the validation
dataset. The evaluate method returns the loss value and, if the model was compiled
providing also a metrics argument, the metric values.

model.evaluate(x_valid, y_valid, batch_size=32)

» The predict method can finally be used to make inference on new data

model.predict (x_valid, batch_size=128)

EUDAT CDI - PRACE Summer School 27 September 2019, Trieste, Italy

IR Colloborative PRACE
EUDAT Data Infrastructure

Model saving and restore

» A trained model can be saved and stored to a file for later retreival. This allows you to
checkpoint a model and resume training later without rebuiling and training from scratch.

» Files are saved in HDFS5 format, with all weight values, model’s configuration and even the
optimizer’s configuration.

save_model_path="’ saved/intro_model’
model.save (filepath=save_model_path » include_optimizer=True)

model = tf.keras.models.load _model(filepath=save_model_path)

EUDAT CDI - PRACE Summer School, 23-27 September 2019,

IR Colloborative PRACE
EUDAT Data Infrastructure

Try it out

EUDAT CDI - PRACE Summer School, 23-27 September 2019, Trieste, Italy 19/

IR Colloborative PRACE
EUDAT Data Infrastructure

The MINIST dataset

» The MNIST data set is a standard set of handwritten numerical digits from 0 to 9 which is
commonly used as the "Hello World" test for Deep Learning classification problem.

» Each sample is a 28 x 28 grayscale image.

G

o~ Mo

=

N o]
No S W)

he]

S a—~y
SO
RIS

EUDAT CDI - PRACE Summer School, 23-27 September 2019, Trieste, Italy

IR Colloborative PRACE
EUDAT Data Infrastructure

Loading MNIST

» Keras comes with many dataset built in and automatically splits the data into a training and
validation set.

(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.
load_data ()

EUDAT CDI - PRACE Summer School, 23-27 September 2019,

IR Colloborative PRACE
EUDAT Data Infrastructure

Defining a model

model.add(tf.keras.1ayars.ConvZD(filters=bl, kernel_size=2, padding=’
same’, activation=’'relu’, input_shape=(??,77,7)))
model.add(tf.keras.layers.MaxPooling?2D (pool_size=2))
model.add (tf.keras.layers.Dropout (0)
model.add (tf.keras.layers.Conv2D(filters=
same’, activation=’relu’))
model.add (tf.keras.layers.MaxPoolin
model.add (tf.keras.layers.Dropout (0.3
model.add (tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense (256, activation=’relu’))
model.add(tf.keras.layers.Dropout (0.5))
model.add(tf.keras.layers.Dense(?, activation=’softmax’))

kernel_size=2, padding=~’

(pool_size=2))

)

RACE Summer School, 23-27 September 2019, Trieste, Italy

IR Colloborative PRACE
EUDAT Data Infrastructure

Compiling and Training

» The categorical cross entropy, — Y. p(x)g(x), with p the true distribution and ¢ the expected
one.

» Adam is adaptive learning rate optimization algorithm.

model.compile (loss=’categorical_crossentropy’,
optimizer=’adam’,
metrics=[’accuracy’])

model.fit (x_train,
y_train,
batch_size=64,
epochs=10,
validation_data=(x_valid, y_valid),

)

» Try it out

EUDAT CDI - PRACE Summer School, 23-27 September 2019,

IR Colloborative PRACE
EUDAT Data Infrastructure

Callbacks

» What if we want to stop if accuracy is > 0.01 ?

» define a callback

class myCallback(keras.callbacks.Callback)
def on_epoch_end(self,epoch,logs={}):
if (logs.get(’acc’)>0.01):
print ("\nAccuracy exceeds threshold, Stop train!")
self .model.stop_training =True

» the install it

mycallbacks=myCallBack ()
model.fit (train_images ,train_labels ,epoch=100,callbacks=[mycallbacks

1)

EUDAT CDI - PRACE Summer School, 23-27 September 2019, Trieste, Italy

IR Colloborative PRACE
EUDAT Data Infrastructure

Callbacks

» Keras provides some predefined callbacks to feed in, among them for example:
> TerminateOnNaN(): that terminates training when a NaN loss is encountered
> ProgbarLogger(): that prints metrics to stdout
> ModelCheckpoint(filepath): that save the model after every epoch
> EarlyStopping: which stop training when a monitored quantity has stopped improving
> LambdaCallback: for creating simple, custom callbacks on-the-fly

> You can select one or more callback and pass them as a list to the callback argument of the
fit method.
> You can also create a callback object from scratch, customizing its behaviour overloading
the base methods of the Callback Keras class:
> on_epoch_begin and on_epoch_end
> on_batch_begin and on_batch_end
> on_train_begin and on_train_end
» A callback has access to its associated model through the class property self.model, so that
you can monitor and access many of the quantities which are in the optimization process.

EUDAT CDI - PRACE Summer School 27 September 2019, Trieste, Italy

IR Colloborative PRACE
EUDAT Data Infrastructure

Distributed Deep Learning

RACE Summer School, 23-27 September 2019, Trieste, Italy

IR Colloborative PRACE
EUDAT Data Infrastructure

Neural Network concurrency

P1W{@
e [g [T ke
e[l ar P1 P2 P3

(a) Data Parallelism (b) Model Parallelism (c) Layer Pipelining

Tal Ben-Nun and Torsten Hoefler, Demystifying Parallel and Distributed Deep Learning: An In-Depth Concurrency Analysis,
2018

EUDAT CDI - PRACE Summer School 27 September 2019, Trieste, Italy

http://arxiv.org/abs/1802.09941
http://arxiv.org/abs/1802.09941

IR Colloborative PRACE
EUDAT Data Infrastructure

Data Parallelism vs Model Parallelism

<%é>®<§3 &7®®|_
<%é> <> =>X) =0
E5Q~ PR

Shared
Data Data-Parallel Model Shered odel Pastioned

Parallel Model
Partitions Workers States Data Workers States

EUDAT CDI - PRACE Summer School, 23-27 September 2019, Trieste, Italy

IR Colloborative PRACE
EUDAT Data Infrastructure

Hardware and Libraries

» Itis not only a matter of computational power:
> CPU (MKL-DNN)
» GPU (cuDNN)
> FPGA
> TPU
» Input/Output
> SSD
> Parallel file system (if you run in parallel)
» Communication and interconnection too, if you are running in distributed mode
> MPI
> gRPC + verbs (RDMA)
> NCCL

EUDAT CDI - PRACE Summer School 27 September 2019, Trieste, Italy

W Collaborative PRACF
EUDAT Data Infrastructure

Data Input Pipeline

EUDAT CDI - PRACE Summer School, 23-27 September

IR Colloborative PRACE
EUDAT Data Infrastructure

CPU optimizations

» Built from source with all of the instructions supported by the target CPU and the
MKL-DNN option for Intel® CPU.
> Adjust thread pools
> intra_op_parallelism_threads: Nodes that can use multiple threads to parallelize their execution

will schedule the individual pieces into this pool. (OMP_NUM_THREADS)
> inter_op_parallelism_threads: All ready nodes are scheduled in this pool

config = tf.ConfigProto()
config.intra_op_parallelism_threads
config.inter_op_parallelism_threads
tf.session(config=config)

44
44

» The MKL is optimized for NCHW (default NHWC) data format and use the following
variables to tune performance: KMP_BLOCKTIME, KMP_AFFINITY
OMP_NUM_THREADS

EUDAT CDI - PRACE Summer School 27 September 2019, Trieste, Italy

IR Colloborative PRACE
EUDAT Data Infrastructure

Synchronous and asynchronous data parallel training

(e rer Dovieare)
Parameter Device(s)

AP
Add | = h

| Device A | Devices Device C

(_client H>(Update model % model model %

g | Lce) | Joo) | Jdo

Synchronous Data Parallelism

Parameter Device(s)
s - G |

e 2 -Gy~ A
(Clent 1L~ Gpe) 2

| Device A | Devices Device C

Smodelf | |3modelf | | Emodel

Jan] | |eo
_J
Asynchronous Data Parallelism

@:

http://arxiv.org/abs/1603.04467

IR Colloborative PRACE
EUDAT Data Infrastructure

Keras GPUs Parallel Model

model = keras.Sequential()

gpus=4

parallel_model = keras.utils.multi_gpu_model (model, gpus=gpus)
parallel _model. le (loss=’categorical_crossentropy’,

optimizer=’adam’,
metrics=[’accuracy’])

parallel_model.fit(x_train,
y_train,
batch_size=batch_size,
epochs=epochs,
validation_data=(x_valid, y_valid),

)

RACE Summer School, 23-27 September 2019, Trieste, Italy

IR Colloborative PRACE
EUDAT Data Infrastructure

Keras + Uber/Horovod

import horovod.tensorflow.keras as hvd

#Horovod: initialize Horovod.
hvd.init ()

opt = tf.keras.optimizers.Adam(0. * hvd.size())
opt = hvd.DistributedOptimizer (opt)

model. (loss=’categorical _crossentropy’,
optimizer=opt,
metrics=[’accuracy’])

callbacks = [

other processes.
hvd.callbacks.BroadcastGlobalVariablesCallback(0),

model.fit(x_train,
y_train,
batch_size=batch_size,
callbacks=callbacks,
epochs=epochs,
validation_data=(x_valid, y_valid)

Horovod: broadcast initial variable states from rank 0 to all

RACE Summer School, 23-27 September 2019, Trieste, Italy

IR Colloborative PRACE
EUDAT Data Infrastructure

Hands-on

» Use keras — mnist.py
» Define the input shape in the first layer and the output shape in the last layer
» Run it and play with hyperpameters

EUDAT CDI - PRACE Summer School 27 September 2019, Trieste, Italy

IR Colloborative PRACE
EUDAT Data Infrastructure

Hands-on

» Use keras — mnist.py

» Define the input shape in the first layer and the output shape in the last layer
» Run it and play with hyperpameters

» Use keras — mnist — mgpu.py

» Try the multi GPU on Galileo. Play with the number of GPU and the hyperparameter
(batchsize and epochs)

EUDAT CDI - PRACE Summer School, 23-27 September 2019, Trieste, Italy

IR Colloborative PRACE
EUDAT Data Infrastructure

Hands-on

» Use keras — mnist.py

» Define the input shape in the first layer and the output shape in the last layer
» Run it and play with hyperpameters

» Use keras — mnist — mgpu.py

» Try the multi GPU on Galileo. Play with the number of GPU and the hyperparameter
(batchsize and epochs)

» Use keras — mnist — hvd.py. Play with the number of GPU, the number of nodes and the
hyperparameters (batchsize and epochs)

EUDAT CDI - PRACE Summer School, 23-27 September 2019, Trieste, Italy

IR Colloborative PRACE
EUDAT Data Infrastructure

Other References

» Horovod

» NCCL

» MNIST

» CIFAR datasets

» Deeplearning.ai youtube channel

EUDAT CDI - PRACE Summer School, 23-27 September 2019, Trieste, Italy

https://github.com/horovod/horovod
https://developer.nvidia.com/nccl
http://yann.lecun.com/exdb/mnist/
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.youtube.com/channel/UCcIXc5mJsHVYTZR1maL5l9w/featured

	Introduction
	Keras
	Distributed Deep Learning

